May 4, 2011

Harmonic Analysis Lecture Notes 21

Filed under: 2011 Harmonic Analysis Course — xuhmath @ 5:56 pm

In this discussion, we will prove the following theorem.

Theorem (Sharp Sobolev Embedding, Aubin & Talenti) Fix {d \geq 3}. The inequality

\displaystyle  	\|f\|_{L^\frac{2d}{d-2}} \leq C_d \| \nabla f\|_{L^2}

where the constant {c_d} is determined by inserting {W(x) = (1 + \frac{|x|^2}{d(d-2)})^{-\frac{d-1}{2}}}. Moreover, equality occurs in the above if and only if {f(x) = \alpha W(\frac{x-x_0}{\lambda})} for some {\alpha \in {\mathbb C}}, {x_0 \in {\mathbb R}^d}, and {\lambda > 0}.

The most difficult part of the proof is to show that there is indeed an optimizer (cf previous discussion with the sharp Gagliardo–Nirenberg inequality). Moreover, once we have the correct “bubble decomposition’, the existence of an optimizer is then a simple sub-additivity argument.

Theorem Let {f_n} be a bounded sequence in {\dot H^1({\mathbb R}^d)} with {d \geq 3}. Then there exist {J_{\max} \in {\mathbb N} \cup \{ \infty\}}, {\{ \phi^j\}_{j=1}^{J_{\max}} \subseteq \dot H^1({\mathbb R}^d)}, {\{x_n^j\}_{j=1}^{J_{\max}}}, {\{\lambda_n^j\}_{j=1}^{J_{\max}} \in (0,\infty)} so that along a subsequence in {n} we can write

\displaystyle  	f_n(x) = \sum_{j=1}^J (\lambda_n^j)^\frac{2-d}{2}\phi\left(\frac{x-x_n^j}{\lambda_n^j}\right) + r_n^J

for each finite {J \geq J_{\max}}, with the following properties

  1. {\phi^j = \text{w-lim}_{n\rightarrow \infty} (\lambda_n^j)^\frac{d-2}{2}\phi\left(\lambda_n^j[x-x_n^j]\right)} in {\dot H^1}.
  2. {\lim_{j \rightarrow J_{\max}} \lim_{n\rightarrow\infty} \| r_n^J\|_{L^\frac{2d}{d-2}} = 0}.
  3. For all {J}, {\lim_{n\rightarrow\infty} \Big| \|f_n\|_{\dot H^1}^2 - \sum_{j=1}^J \|\phi^j\|_{\dot H^1}^2 - \|r_n^J\|_{\dot H^1}^2 \Big| = 0}.
  4. {\lim_{J \rightarrow J_{\max}} \lim_{n\rightarrow\infty} \Big| \|f_n\|_{L^\frac{2d}{d-2}}^\frac{2d}{d-2} - \sum_{j=1}^J \|\phi_j\|_{L^\frac{2d}{d-2}}^\frac{2d}{d-2} \Big| = 0}.
  5. {\frac{|x_n^j x_n^{j'}|}{\sqrt{\lambda_n^j\lambda_n^{j'}}} + \big| \log \left(\frac{\lambda_n^j}{\lambda_n^{j'}}\right) \big| \rightarrow \infty}.


Leave a Comment »

No comments yet.

RSS feed for comments on this post. TrackBack URI

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s

Create a free website or blog at WordPress.com.

%d bloggers like this: